A Critical Appraisal of the Hippocampal Subfield Segmentation Package in FreeSurfer

نویسندگان

  • Laura E. M. Wisse
  • Geert Jan Biessels
  • Mirjam I. Geerlings
چکیده

In the last decade, the in vivo assessment of hippocampal subfields has received increasing attention because of the differential role of hippocampal subfields in several neuropsychiatric diseases (Geuze et al., 2005). Several manual segmentation protocols have been developed for 3–7 T MRI (Mueller et al., 2007; Van Leemput et al., 2008; La Joie et al., 2010; Wisse et al., 2012), some of which are automated (Van Leemput et al., 2008; Yushkevich et al., 2009). One of these automated protocols (Van Leemput et al., 2008, 2009) has recently been implemented in FreeSurfer (Fischl, 2012), a freely available easy-to-use set of automated brain MRI analysis tools. This has made hippocampal subfield segmentation available to everyone with 1.5–3 T MRI data and the method is being used in an increasing number of studies (Teicher et al., 2012; Li et al., 2013; Pereira et al., 2014). In this commentary, we express our concern with the hippocampal subfield segmentation package in FreeSurfer. In particular, we address issues concerning (1) image acquisition, (2) the parcelation scheme, and (3) validation of this automated segmentation. The first concern with the hippocampal subfield segmentation package in FreeSurfer is that it requires low resolution (1 mm3) T1 images (whole-brain). Most other manual or automated segmentation methods are developed for high-resolution T2 images (in-plane: 0.20–0.70 mm2, often with partial-brain coverage) (Mueller et al., 2007; Kerchner et al., 2010; La Joie et al., 2010; Wisse et al., 2012). On high-resolution T2 images, contrast between white and gray matter is sufficient to visualize the white matter bands between the dentate gyrus and the cornu ammonis (CA) that are generally used as a boundary between these subfields. The low resolution T1 images on which the FreeSurfer segmentation is applied do not contain this amount of detail. See Figure 1 for a comparison of low resolution T1 and high-resolution T2 images. The second concern is the parcelation scheme used for the FreeSurfer segmentation, which is based on the subfield distribution in one coronal section in the body of the hippocampus (Van Leemput et al., 2008, 2009) and then used to segment subfields along the complete long axis of the hippocampus. However, the presence and position of the subfields differ along the long axis (Duvernoy et al., 2005; Mai et al., 2008; Insausti and Amaral, 2012). Consequently, the locations of the boundaries between subfields in this segmentation protocol are in mismatch with the anatomical atlases in a large part of the long axis. For example, in FreeSurfer, the dentate gyrus is segmented from the anterior pole of the hippocampus, while it only becomes visible 6 mm after the anterior pole of the hippocampus (Insausti and Amaral, 2012). Several segmentation methods exist also for T2 images, manual (La Joie et al., 2010; Wisse et al., 2012) as well as automated (Yushkevich et al., 2009). Because of the complex anatomy of the hippocampal head and tail, these methods either limit the segmentation of subfields to the hippocampal body (Mueller et al., 2007;Yushkevich et al., 2009) or developed a separate segmentation scheme for the head and/or tail (La Joie et al., 2010; Wisse et al., 2012; Winterburn et al., 2013). As a consequence of the placement of the subfield boundaries in FreeSurfer, large parts of subfields are assigned to neighboring subfields. For example, large parts of CA1 are included in the subiculum and CA2&3. This generates volume estimates that are in contrast with anatomical studies. In studies using the FreeSurfer segmentation package (e.g., Teicher et al., 2012; Boen et al., 2014), CA2&3 is the largest subfield, while CA1 is the smallest. According to anatomical studies, CA1 is the largest and CA2&3 is the smallest subfield (Simic et al., 1997; Rossler et al., 2002). In general, subfield boundaries are difficult to discern in vivo and part of subfields are counted toward neighboring subfields in all segmentation protocols. However, other manual or automated methods generate subfield estimates that are more in line with those of anatomical studies (e.g., Wisse et al., 2012; Winterburn et al., 2013). See Table S1 in Supplementary Material for a comparison of subfield volumes and their percentage distribution within the hippocampus according to several segmentation protocols. Studies using this FreeSurfer segmentation package to investigate hippocampal subfield volumes in mild cognitive impairment (MCI) and Alzheimer disease (AD) reported results that differ from anatomical studies. Several studies using the FreeSurfer package reported that MCI and AD were mainly related to CA2&3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2

Objective Subfield-specific measurements provide superior information in the early stages of neurodegenerative diseases compared to global hippocampal measurements. The overall goal was to systematically compare the performance of five representative manual and automated T1 and T2 based subfield labeling techniques in a sub-set of the ADNI2 population. Methods The high resolution T2 weighted ...

متن کامل

Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high-resolution T2-weighed MR imaging

BACKGROUND AND PURPOSE Automated subfield volumetry of hippocampus is desirable for use in temporal lobe epilepsy (TLE), but its utility has not been established. Automatic segmentation of hippocampal subfields (ASHS) and the new version of FreeSurfer software (ver.6.0) using high-resolution T2-weighted MR imaging are candidates for this volumetry. The aim of this study was to evaluate hippocam...

متن کامل

Comparing manual and automatic segmentation of hippocampal volumes: reliability and validity issues in younger and older brains.

We compared hippocampal volume measures obtained by manual tracing to automatic segmentation with FreeSurfer in 44 younger (20-30 years) and 47 older (60-70 years) adults, each measured with magnetic resonance imaging (MRI) over three successive time points, separated by four months. Retest correlations over time were very high for both manual and FreeSurfer segmentations. With FreeSurfer, corr...

متن کامل

Hippocampal subfield volumetry in patients with subcortical vascular mild cognitive impairment.

Memory impairment is a typical characteristic of patients with subcortical vascular mild cognitive impairment (svMCI) or with amnestic mild cognitive impairment (aMCI). The hippocampus, which plays an important role in the consolidation of information from short-term memory to long-term memory, is a heterogeneous structure that consists of several anatomically and functionally distinct subfield...

متن کامل

Automated segmentation of hippocampal subfields in drug-naïve patients with Alzheimer disease.

BACKGROUND AND PURPOSE Although a few automated hippocampal subfield segmentation methods have been developed, there is no study on the effects of the diagnosis of Alzheimer disease on the hippocampal subfield volume with in vivo MR imaging. The aim of this study was to investigate hippocampal subfield volume differences between drug-naïve subjects with AD and healthy elderly controls by using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014